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Spectral reflectance curves to distinguish soybean from
common cocklebur (Xanthium strumarium) and sicklepod
(Cassia obtusifolia) grown with varying soil moisture
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Producers could save time and money while decreasing
the amount of pesticide released into the environment by
applying herbicides site specifically. Weeds most often do
not grow uniformly across the field but rather grow in ag
gregated patches (Cardina et al. 1997). Tb manage weed
populations site specifically, fields must be sampled relatively
intensively. The degree to which fields must be sampled for
site-specific herbicide application to be effective is currently
cost- and time prohibitive (Clay et al. 1999). Remote sens
ing is a tool that can be used to help identify weed infes
tations. The accuracy with which ground, aerial, and satel
lite sensors can measure targets in the field is constantly
increasing (Thenkabail 2002). For this technology to be
valuable in a variety of circumstances arid locations, it is
necessary to discriminate between weeds and crop under a
variety of conditions. The degree to which moisture stress
influences our ability to discriminate among weed species
and the crop is relativeiy unanown.

Considerable research has been conducted on the use of
remote sensing to monitot moisture content of vegetation
(Ceccato as ai. 2001; Curran et al. 2001; Danson as a!,
1992; Good er at 1999; Hardy and Burgan 1999; Hunt
as 2 Roct 89 H star er a, Ir q °e’ in u
Stein.metz et al. 1990; Unganai and Kogan 1998). Remote
sensing has also been u..sed to assess the moisture status of
vegetation to predict the likelihood and Intensity of forest
or rangeland fires (Roberts et a!. 1993. 1997). Cohen (1991)
used veneration indices to estimate lea.f water note.nriai
(UIVPi and relative water content, The bands iat com
prised these indices were the Thematic Mapper (TM) bands.
The bands that were most useful in identifying stress were
TM5 (1.55 to 1.75 jim) and TM7 (2.08 to 2.35 ltm).
These bands were composed of broad portions of the elec
tromagnetic spectrum. The indices created from these hands
were suitable for use in predicting stress or accumulated ef2

Experiments- were conducted to examine the use of spectral reflectance curvesdiscriminating between plant species across moisture levels. Weed species and soybean were grown at three moisture levels, and spectral reflectance data and leaf waterpotential were collected every other day after the imposition of moisture stress at Swk after planting. Moisture stress did not reduce the ability to discriminate betweenspecies. As moisture stress increased, it became easier to distinguish between species.ree,ardless of analysis technique. Signature amplitudes of the top five bands, discretewavelet transforms, and multiple indices were promising analysis techniques. Di’criminant models created from data set of 1 yr and validated on additional data setsprovided, on average. approximately 80% accurate classiFication among weeds andcrop. This suggests that these models are relatively robust and could potentially beused across environmental conditions in field scenarios.

Nomenclature: Soybean, Glycine mar (L.) Metr,
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fct of moisture deprivation; yet, they were nor useful in
diagnosing fluctuations in water content of vegetation. Although a maoriry of the indices published in the literaturetend to focus on the visible region of the electromagneticspectrum, Danson et al. (1992) suggest that the near infrared (NIR) and midinfrared region may also be useful to
assess moisture status of vegetation. The particular region ofthe electromagnetic spectrum from which these portions ofdata are gathered to create the indices, as well as the bandwidths, will determine the usefulness of the indices created.For instance, Hardy and Burgan (1999) used the Normalized Difference Vegetation Index (NDV2) to assess the moistaste status of a grassy site composed of wheatgrass (Agro
fj’ron canium L,). -a shrub site composed of sagebrush (Artenzisia tridentate Nutt,)’, and an open fbrest site composed
of Douglas hr (Pseudotsuga menziesii Mirb,) and ponderosapine (nuspona’erosa Douglas cx Lawson o igmfiar’
correlations were found between N.DVI and vegetationm.oisture.

Rouse et a!. (1912) and flteker (19791 were pioneers in
using portions of the electromagnetic spectrum ln ratiossuch as NDVI (NIR — red’f(1P n- red’ rt’ acsrts eneta
i. teal s and gr’r heco sC A ‘ c c0Je’ t r e
vegetation to absorb red light and reflect energy: i.n the Nih,viomous plants will have a high NDVI critic. Conversely,

rUit eat ed , C ow sD , 3 abso,b tea
light and reflect NIR; thls scenario results in low NDVI

‘2 d it i los sign ri of u duec
commonly found in the literature were compiled and used
as classifiers (Table 1). Additional indices such as Soil-Ad
justed Vegetation Index have been created that address is-sues
such as minimizing soil background interference (Huete
1988). With this concept of tailoring an index to address a
particular need, additional Drought Index of Normalized
Observations indices (Figure 1; Table 2) were designed to
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Lone I. Indices used fhr assessing vegetative health and status,
Indices Ratiost References

RVI (NIRJ Red) Jordan (1 069)
NDV1 (NIR — Red),’(NIR Red) Rouse et al. (1973), Richer (1979)
DVI (NI.R Red) Lillesand and Kiefer (1987), Richardson and Everitt (1992)NI )Vle ‘RR C rren ‘(NIT5 e Litel on r al (1 96
IPV[ N[R!(NIR - Red) Crippen ( 1990)
MSI :TM 5!TM4) Hunt and Rock 1989)

Abbrrviationv DVI, Dilierenee Vegetation index; IPVI, Infrared Fercenrage \%geration Index; MSL 5ojsture Stress index; NDVI, Normalized DifDrr n Is I— D\ P. ‘sDVl gr’ n R\ I Kn \ is is 1-u TV rb1
r vn c’ to - urn to c So 111 ‘N IR ‘ , i I 0 tnt) ‘-ins an 1 1 \{‘s

j ‘i (1 o I 0) 1 n

maximize differences apparent in specific regions of the elec
tromagnetic spectrum between moisture-stressed treatments
and well watered controls. Other studies have also suggested
that the short-wave infrared (1,400 to 2,500 nrn) is largely
influenced by plant water status (Causman 1985: Thcker
1980). -

Not only is the type of vegetation index chosen to eval
uate the data important. the selection of leaves and the difi
ferences in maturity among those leaves is also significant
(Patakas and Noitsakis 2001). Allen et al. (1998) suggest
that environmental factors other than wind and temperature
may contribute to the leaf water status 0f the plant. For
example, elevated CO2 causes stomatal conductance decreas
es, thereby increasing overall LWP of soybean. Penuelas et
aL (1993) noted that spectral signals signifying drought
stress were more evident at the canopy level than at the leaf
level. The highest correlation coefficients among the water

status indices were observed in the species that lost cell wall
elasticity in response to drought stress, suggesting that leaf
architecture and structural effects caused by the canopy ori
entation may strongly influence ability to detect moisture
status,

Not only will remote sensing he used to distinguish be
tween species within a constant moisture level but also will
be used across a range of moisture conditions in fields with
variable elevation and soil textures, There is spatial variabil—
ity with respect to moisture status within a field, as well as
temporal variability. A rainfall event could drastically change
the moisture status within a field, as could irrigation. If
remote sensing can he used to distinguish between weeds
and crops across a variety of moisture levels, this could be
an important first step in demonstrating the usefulness of
remote sensing in weed discrimination across environmental
conditions,

2P1 = Peak 1 = Avg5(163 14641 nm), P2 = Peak 2 = Avg.(2215-2225 mu),

RED Avg.(670-680 mu), 720 720 nm.
Pycuta: I. Drought ind.ices of normalized observation, were compiled from multiple regions of the electromagnetic spectro.m including drooght-sen.,itiveareac ver’vrve 00
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PGeRE 2. Data collection used an active light source for measuring individual leaves positioned on a black background.

neath thc leaf was used to eliminate background effects.
Once reflectance of the leaf was measured, this leaf was re
moved from the plant and the LWP measurements were
measured with a pressure chamber2 Leaf area was also re
corded with a leaf area meter3 on several sampling dates
throughout the experiment. Green weight and oven-dry
weight were both recorded, and nutrient analyses were also
performed at the beginning (September 10>, middle (Sep
teniber i7), and end (October 2) of the 2000 experiment.

These spectral reflectance measurements were collected in
the spectral range of 350 to 2,500 urn. This resulted in
2,151 individual spectra.L bands for each spectral reflectance
curve, with a bandwIdth of Rd nm between. 350 and I ,000

as 0 my a d S II o \prr
responses potentially suggesting moisture stress were aria
lyzed and perti.nent features were extracted using indice..s,
signature auplitedes (SA), and waveler rransfbrm.s.

Spectral Data Analysis

Spectral reflectance data were analyzed with SA, discrete
waa’elet transforms D\XT) (both with and without linear
discriminant analysis [LDA]), and indices to determine the
utility of these analysis techniques for discriminating be
tween species grown at no moisture stress (100% moisture),
moderate moisture stress (60% moisture), and high moisture
stress (ii%- moisture).

Nutrient analyses were performed three timen early (dsp-

tember 9 to 10), middle (September 17), and late (October
2) throughout the summer of 2000. Across species, none of
the nutrient analyses were found to be positively or nega
tively correlated beyond 0,62 with LWP (data not shown).

SA analysis uses a subset of the spectral bands as features,
Because 2,1 51 reflectance values are available to be used as
classification features, it is computationally efficient to select
a subset of hands (top five bands) on the basis of discrimi
nant capahilins Receiver operator characteristics (ROd
anal su was used to determine the efficacy of each hand as
a potential classification feature. POd analysis used i.n this
study assumes that the two classes’ features have Gaussian

or TI e R I I 1
to 1,0, with 0.5- representing features not useful in eNs-

sification (exact overlap of the two classes’ distribution
curves) and 1.0 corresponding to ideal classification featu.res

A : ‘ 5
,

McNeil 1982). The second of these three techniques in
cluded extracting DWT from the hyperspecrral response
data and using these as classification features, Recently, the
energies of the DWT coefficients have been used as classi
fication features (Huang et al. 2001). However, in this study.
classification features are a subset of the DWT coefficients.

The area under the ROd curve was used as a design
parameter for choosing a subset of spectral bands to use as
classification features. The reflectance values tAr the top flvr
bands (laigesr area under the ROd curve) of th.e original

Active light source / )
//

/j”7Fiberoptic cable

$
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Leaf of interest
The leaf was positioned on a flat black background
and the bare-fiber sensor was connected within the
active light-source unit so that the sensor was
positioned approximately 5 cm directly above the leaf

*
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Soybean vs. common cocklebur

position were then subjected to ROC analysis, and five co
efficients with the largest area under the ROC curve were
chosen. LDA was then applied to form the optimum sca)ar
feature, This scalar was then input into a maximum-hitch-
hood classifier. Cross-validation was used for the system
training and testing.

The third analysis technique was indices that were used
as features in traditional statistical classification procedures.
These analysis procedures were conducted with stepwise dis
criminant analysis procedure4 using cross-validation (leave
one—out testing) in all instances.

Results and Discussion

‘Thbles 3 and 4 present classification data using both SA
and DWT across moisture levels in 2000. These data were
collected I through 8 DAS. In 2000, SA, DW’T, and indices
were all effective tools to discriminate between species across
all moisture levels, providing better than 80% discrimina
tion between weeds and soybean, regardless of moisture level
(Thbles 3--5). In 2000 and 2001, as the moisture stress level
increased from no stress to high stress, classification accu
racies with indices combinations also increased from an av

TABLE 4. Discrete wavelet transform 2000 classification accuracies between soybean and.. weed species across moisture levels using maximumlikelihood with ROC curve analysis,

Soybean vs. common cocklebur Soybean vs. sicklepod
-

Moistureb DAM Soybean Common cocklebur Overall Soybean Sicklepod Overall

i/h —-——--—-.•-——————-———

HS 1 89 78 83 100 89 943 89 89 89 89 89
5 100 89’ 94 75 78 777 100 100 100 89 89 898 100 100 100 89 100 9494-S 1 100 100 100 100 100 1003 89 89 89 78 67 725 100 sOO 100 100 89 9489 78 83 100 89 948 100 78 88 100 100 100948 1 89 100 94 78 63 713 100 100 100 100 89 945 75 22 67 75 89 827 100 100 100 100 100 1008 100 89 94 78 89 83

Abbreviation: ROC receiver operator characteristics.
Mosturc: FIS. high siress 4O”-t, moisture): \f5 moderate strcss (f907 moisture); 7iS,,/ssrrcss 1(007 ore),.Abhrrviation: 075, days afte.r stress, nomber of days after the imposition of osoistore strcs,

FABLE 3. Signature amplitude 2000 classification accuracies between soybean and
likelihood with ROC5 curve analysis.

Moisture6 DAM Soybean (Zommon cocklebur Soybean Sicklcpod

weed species across moisture levels using maximum

Soybean vs. sicklcpod

Overall

KS I 100 100 100 100 100 1003 100 100 100 100 89 945 88 89 88 100 100 1007 89 1(10 94 100 100 1005 100 100 100 89 100 84MS 1 100 100 100 100 100 1003 100 100 100 100 100 101)5 88 89 88 100 89 947 100 89 94 100 100 1008 88 89 88 100 89 94
1 78 78 78 78 50 653 100 100 100 100 89 945 100 78 88 100 89 947 100 100 100 100 8 $88 100 89 94 89 89 89

Abbreviation: ROC. receiver operator charactcristicv
‘1ossr re P IsgI ( 0% “o ii C nor c e s ‘7 / r os 7

— rre un,, o” rum)Abbreviation: DAS, days after stress, number of days after the imposition 94 moisture stress,
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7. mpirison of multiple species both within moisture
leuns and icross moisture levels using pooled data from 2000 and
2001 with linear discriminant functions created from multiple in
dicex

moon
51.otcrc Sc,vec,n cockltiur Skklcpod Ovcrs!1

%

———————— With.in moisture level
HS 94 86 91 91
MS 92 88 89 91
Ns 83 90 85 86

ss moisture levels
All 89 90 89

1ioisture: 118 hieh stress inoisrero: MS. nioderee .rrrcs
no stress (1 O0s nlotsturO

varying leaf moisture levels. These data and conclusions con
cerning leaf reflectance set the groundwork for flirure re
search that should investigate the degree to which canopy
architecture and wilti rig affect reflectance. They also dem
onsrrate the promise for using remote sensing to correctly
discriminate patches of weeds so that they may be treated
site specifically.

In summary, moisture stress does not decrease the ;ihility
to discriminate between species. As moisture stress increased,
it became easier to distinguish between species, regardless of
analysis technique. SA (top five band) analysis was a prom
ising technique because of its accuracy and computational
simplicity These data, when pooled and analyzed across
years. suggest that moisture level, at least at the leaf level,
does not decrease the ability of remote sensing to discrimi
nate between weeds and soybean. The potential for discrim
inating weeds from soybean with hyperspectral data is prom
ising and appears not to be diminished by changes in re
flectance caused by varying leaf moisture status.

These data analysis techniques should now be applied to
field data, From an applied perspective, regardless of analysis
technique, soybean was correctly discriminated from weed
species better than 85%, on average. It will be interesting
to see how well these analisis techniques perform when ap
plied to field data Possible limitations in the application of
these techniques would include pixel mixing, background
interference from soil, vatiabilitv in the intensity of sunlight,
and canopy architecture effects. Limitations to this end
would include earth-season measurements tn which vegeta
tion (both weeds and so bean covers only a small portion
of the ground. It will be ch.ai.ienging to discriminate between
weeds and so bean if only a small percentage of the image
comprises vegetation. Soil will contribute substantially to
0 ce iou I c ‘ ii bce
component 01 rty sm sgc sI’trtpret s ion process has ra

be addressed 9kith the ever increasing spatial and spectral
resolution and the computationaily intense algorithm.s
discriminate pixel classes there cx;srs the otc-rstial for these
arsaivsis techniques to be beneficial to the producet One of
the piomising findings from this research is that leaf—level
reflectance can be used to separate soybean from weed spe
cies, regardless of moisture status of leaves.

Sources of Materials
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LI-3 100 Laboratory Area Meter LI-COR Biosciences, 4421
Superior Street, Lincoln, NE 68504.

SAS, 545 institute Inc.. 548 Campus Drive, Care, XC 2751 3
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